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Summary-A new PC compatible computer program SIRKO for the calculation of the equilibrium 
constants by means of the simultaneous processing of different experimental data from various techniques 
is given. This program is characterized by the application of a universal response function, which allows 
many different physicochemical methods to be used to study equilibria without any modification of the 
program. It is also possible to refine additional parameters (electrode parameters, initial analytic 
concentration, erc). We have used the least-squares method with the weightings calculated according to 
the error propagation rule taking into account all independent variables. To minimize the function, 
singular Jacobian decomposition is applied. This allows control of its range and forms a set of parameters, 
determined from the experimental data. 

Since the appearance of the early works of 
Sillen’ dealing with algorithms for the 
calculation of equilibrium constants many 
different programs have been published.24 
Some papers9-‘* using this analysis show that 
these programs have varying potential uses, and 
that the various simplifications used in the 
majority of the programs allow processing of 
data for only one or few types of experiments 
(for example, SCOGS,’ MINIQUAD, TIT- 
FIT,4 PROTAF’-potentiometric experiments; 
SQUAD,6 LETAGROP-SPEFO’-spectropho- 
tometric experiments). 

Almost all these programs have been written 
for scientific computers (second or third gener- 
ation computers) and these are not user friendly. 
Even when these programs have been translated 
for PC computers they are batch-oriented pro- 
grams and the complete input desk must be 
prepared before the programs can be executed. 
Moreover, they do not use graphic presentation 
of data and thus do not carry a visual control 
for optimization. 

*Authors to whom correspondence should be addressed. 

However, as the authors’ have noted, 
chemists need universal personal computer pro- 
grams which are highly serviceable: that is, 
which do not need highly qualified operators 
and which allow the processing of a variety of 
physicochemical experiments. Here, the schemes 
used must be statistically rigorous: in particular, 
it is necessary to apply weighting factors 
calculated according to the error propagation 
rule, especially for simultaneous processing of 
data of different experimental types. 

Hence, we have developed the program 
SIRKO for the calculation of equilibrium 
constants, and the refinement of additional 
parameters, from data obtained using different 
physicochemical methods. A distinctive feature 
of our approach is the use of the universal 
response function applicable to very many 
different experimental techniques. This allows 
analytical calculation of all necessary 
derivatives and weighting factors which in- 
creases the speed of our program. This also 
allows the inclusion of any independent variable 
into the set of refinable parameters, which 
eliminates systematic errors. 
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To minimize the weighted summation of the gives a system of m equations relative to the 
squared deviation of calculated values from correction on the initially preset parameters: 
experimental ones, the method of the singular 
matrix decomposition of the first derivatives 

J-w.J~Q=J~w+AF, (3) 

was used. This allows control of the matrix where AF is the vector of deviation of the 
range and formation of a set of parameters response function: 
which can be readily determined from a given 
series of experiments. 

AF;==p_fl’= (4) 

and AQ the increment vector of the parameters: 

AQi = Qi - QP, 
OPTIMIZATION PROCEDURE 

W is the diagonal matrix of the weighting 
A typical experiment for the study of an factors; J is the Jacobian matrix of the system 

equilibrium process, for example, complexation, with the elements: 
consists in the following: one group of the 
variables, called independent variables, is held J,,= !% 
constant, then another dependent variable is ’ aQj' 

(5) 

measured. Usually the volume of titrant added The symbol N means the matrix transposi- 
(V) is the independent variable, while the tion. 
depended one is e.m.f. in potentiometry, or light To solve the system of equations (3) the 
absorption in spectrophotometric experiments. inversion of the matrix hVJ is necessary, which 

In order to determine the relationship is possible only when the determinant of the 
between the dependent and independent vari- matrix differs from zero. If the determinant is 
ables, it is necessary to construct a mathematical not equal to zero, but is very small, then the 
model of the equilibrium chemical system. The matrix is considered poorly conditioned. Poor 
stability constants of the complexes form the conditionality is expressed in the fact that the 
parameters of this system. The parameters can sum of the squares of deviations U alters within 
be evaluated, for example, by the least-squares wide and unpredictable limits and does not 
method, for which the best parameters are those converge to a minimal value. It often occurs 
which minimize the weighted summation of the when the selected initial values of the 
squared deviations of the calculated values of parameters are very far from those providing 
the dependent variable from the measured ones: the minimum or if two or more parameters were 

highly correlated. Poor conditionality may be 
u = c c W,. (F;P - FTIC)*, 

61) also due to insufficient experimental infor- 
i j mation. In these cases the problem of obtaining 

where i is the number of the series of exper- a stable solution of system (3) appears. 
iments; j is the number of the experimental point In our program, following Novikov and 
in the given series; Fti is the function of the Rajevsky,13 instead of the standard method 
parameters Qi(i = 1, . . . , m), independent based on the solution of the system of equations 
variables; Xi(i = 1, . . . , n) and Vii below is (3), the method of singular Jacobian decompo- 
called the response function; sition is used. This method is the most reliable 

F,=L<Q,,** *,Qm,xl,..-vXnv vu>. (2) 
for solution of poorly conditioned systems of 
equation such as (3). It allows control of the 

The response function may have the same range of the Jacobian matrix and forms a set of 
form for different series of experiments if the parameters which can be reliably determined 
same physicochemical method is used for the from processed data. I4 For the singular de- 
study of the equilibria, or a different form, if composition the subprogram SVD15 was used. 
several methods are used. 

We will consider only one experiment, so that 
the formula will not be too cumbersome. MATHEMATICAL MODEL OF THE 

Usually for the determination of the stability 
EQUILIBRIUM CHEMICAL SYSTEM 

constants the Newton-Gauss method is used. To set the relationship between the dependent 
Here, the function (1) is decomposed into variable, independent variables and the par- 
Taylor’s series, where only members of the first ameters, it is necessary to design a mathematical 
order are considered. Then, minimization of U model of the equilibrium chemical system. Here, 
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it is convenient to use a formal-stoicheometric 
approach and to represent the reaction mixture 
as a stoicheometric matrix. Then, the transition 
from one model to another is readily realised by 
changing the stoicheometric matrix. 

Using such an approach from S types of the 
particules Ci (i = 1, . . . , S) the group of P 
independent components Bj(j = 1,. . . , P) is 
selected and called the basis set. Any component 
Ci may be obtained from basis set via the 
relationship: 

i v!,+BjzCi, i=l,..., S, (6) 
j=l 

where v is the stoicheomet~c matrix, of which 
the elements vu represent stoicheometric co- 
efficients of the component Bj in the i-th 
reaction. The reaction giving B, is included in 
(6). That is, if Ci coincides with the component 
Bk of the basis, then Ki = 1 and vjft = 1, while 
vii=0 (j #k). 

At equilibrium, the following relationships 
are observed for the mass balance of the com- 
ponents 

$, vg[Ci] = bj, j = 1, e * s 3 P (7) 

and for the law of mass action 

ln[Ci] = In Ki + i vij. ln[Bj], i=l,...,S. 
j=l 

(8) 

Here bj is the total concentration of the 
component B1 the brackets designate the equi- 
librium concentrations of the corresponding 
components. 

The calculation of the equilib~~ concen- 
tration from these conditions may be carried out 
by different methods. The most convenient 
method which can be readily algorithmized is 
Brinkley’s method. 

The substitution of the equation (8) into (7) 
gives a system of P non-linear equations relative 
to P unknowns ln[B,]: 

j=l,...,P. (9) 

The solution of this system is carried out by 
Newton’s iteration method. The linearised sys- 
tem of equations has the form: 

Z.A=Y, (10) 

where Z is the symmetric Jacobi’s matrix of the 
system of equations (9) with the elements: 

Y is the residual vector, the elements of which 
are: 

A is the vector of corrections to the initially 
pre-set values of ln[B]. 

Ai = ln[Bi] - ln[BO]. 

Iterations are repeated until: 

(12) 

A,<E, i=l,..., P, 

where E is the specified accuracy of the solution. 
It has been shown” that matrix Z is positive, 

and that the solution of system (9) is unique and 
will always converge from any initial approxi- 
mation. However, if the majority of the sum- 
mations in the Jacobi’s matrix differs from any 
other by a factor less than the machine epsilon, 
then the matrix can become poorly conditioned 
due to the loss of accuracy, and the method fails. 

Thus, the projection method proposed by 
Bugaevskyi6 is, to our mind, a more reliable 
method for the calculation of equilibrium 
concentrations. This method involves two-step 
iterations refining vector Cl. The first step trans- 
poses the initial vector [Ci] into [C[] satisfying 
equation (7) according to the equation: 

[Cl] = [C,] + $ vii 
j=l 

The second projection transposes the concen- 
trations obtained, [Cf], into [Cy] satisfying 
equation (8) according to the equation: 

j= I I= I 

x k$, vk/‘[c;l’(In[c;l-lnX,)). (I41 

Here Z-’ and Z’-’ are the matrices which are 
inverse Jacobi’s matrices for the system (9) at 
the concentrations [Cj] and [C;], respectively. 

The iterations are repeated until convergence 
is reached, which is decided by the summation 
of modulus of the relative increments of concen- 
trations. We have used both Brinkley’s method 
and the projection method. The solution of the 
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linear system in Brinkley’s method or matrix 
inversion in the projection method was carried 
out using triangular decomposition of the posi- 
tively defined symmetrical matrix 2 according 
to Choletsky’s method.ls The matrix 2 is further 
used to determine the derivatives of the response 
function. 

RESPONSE ~NC~ON 

To make the program universal, i.e. that it 
should allow processing of the results for 
different physicochemical methods and does not 
demand specialized knowledge, we use here the 
universal response function. This function is 
prescribed in an explicit form that differentiates 
our method from that proposed by others;’ in 
MICMAC, for example, before starting, the 
user must define the response function in block 
MOSP. On using another type of experiment it 
must be changed. Moreover, all the derivatives 
in the program MICMAC are calculated by 
numerical methods which increases the calcu- 
lation time. To use analytical derivatives these 
must be also given by a user for each type of 
experiment. 

To avoid all these complications we use a 
universal response function describing the most 
widely physicochemical methods for investi- 
gation of equilibrium as follows: 

x lg 
( 

i Eli,* [Gl (15) 
k=l > 

where F is the measured value; S the number of 
components in SOhItiOn; [ck] the equilibrium 
concentration of the k-th component; Y0 a 
constant value for a given method, often reflect- 
ing the solvent properties; Y, a scaling factor for 
potentiometric methods; Y, a scaling factor 
additive methods; Ek the physicochemical 
parameter of the k-th component for additive 
methods; ,!?& the parameter of the k-th 
component for potentiometric methods. A 
significant feature of our approach is the fact 
that all the parameters involved in response 
function (15), such as Y,, Y, , Ek, Ehk, may act 
either as parameters or as independent 
variables. 

The response function (15) allows analytical 
description of all the necessary derivatives for 
minimization of function (1). Thus, if Y,,, Y, , Ek 
and EH, act as parameters, then the corre- 

sponding elements of the matrix J, may be 
easily determined from (15). 

The derivatives with respect to the equi- 
librium constants (it is convenient to use lg K as 
the defined parameters) are also determined 
analytically as follows: 

The derivatives a[&]/8 In K, may be obtained 
taking into account the law of mass action as 
follows: 

Z.X=D, (17) 

where Z is the same Jacobian matrix as for the 
calculation of the equilibrium composition with 
the elements calculated according to equation 

(111, 

aB- x;. = _--!.- 
a In I(k) (18) 

D is the vector of the free members determined 
as follows: 

Di = - vki ’ [c,]. (19) 

Besides refining the parameters Y,, Y, , Ek, 
EHk it might also be necessary to refine the 
initial analytical reagent concentrations. The 
necessary derivatives can be also calculated in a 
similar manner as the derivatives with respect to 
the equilibrium constants. These newly calcu- 
lated derivatives aBija In Bk are determined by a 
linear equation system similar to equation (17). 

The principal suggestion, allowing use of the 
least-squares method, is that the errors in the 
measurement are random variables and subor- 
dinate the normal distribution law. In this case 
the errors of measurement cF are formed from 
the smaller errors bi, their dispersion being 
almost the same, while the distribution law for 
each of them is unrestricted. Thus, correct appli- 
cation of the least-squares method must use the 
weight factor which is calculated using the 
dispersions of both the observed value and the 
independent variable according to the law of 
error distribution. Hence, in our program we 
use the weight factors calculated as follows: 

f 20) 

where the summation extends to all the indepen- 
dent variables. The necessary derivatives 
@q/a&) are calculated analytically as at the 
formation of Jacobian J,,.. It should be noted 
that the weight factors calculated according to 
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equation (20) will depend on the refined 
parameters, so they should be calculated for 
every iteration. 

Thus, we obtain a statistically rigorous 
scheme of refinement of ~u~~b~urn constants 
and the additional parameters using the non-lin- 
ear least-squares method. 

PROGRAM SIRKO 

On the basis of the described approach, we 
have worked out for the program a flow 
diagram which is given in Fig. 1. The program 
has been written in PASCAL for IBM PC and 
compatibles_ 

The subprogram 1 loads the data file 
created by subprogram 5. Using subprogram 2 
it is possible to change the model of the 
~~lib~~ chemical system and the values of 
the parameters and independent variables. 
Subprogram 4 calculates from the covariation 
matrix B, the standard deviations and corre- 

lation coeEcients of the determined parameters: 

where L is the number of experimental points 
and M is the number of determined parameters. 
This subprogram can aIso draw a diagram of 
the experimental and calculated titration curves 
as well as diagrams of the distribution of equi- 
librium concentrations. 

Subprogram 3 optimizes parameters, and in- 
cludes the following steps: (i) for each experimen- 
tal point of every block (one series of the 
experiment is represented by a block) we calcu- 
late the ~quilib~um composition, the response 
function, weight factors and form a matrix .I,. 
(ii) We find the singular decomposition of the 
obtained matrix. (iii) We check the convergence 
of function ( 1 f using Mamilton’s R-factor: 

1 L 
-” 

Load 

[&j-.--“--&L 
Fig. 1, Flow diagram of program SIRICO. 



(iv) Then we terminate the iteration if 
I&- R,_, I +z L, where c is the preset accuracy 
and i is the number of the iteration. Otherwise 
we calculate new values for the parameters and 
continue optimization. fv) To check the agree- 
ment of the chosen mode1 with the experimental 
data, we compare the obtained values of the 
R-factor with the limiting value J&,: 

where o;- is calculated taking into account all the 
independent variables of the equation (20). The 
fit of the model with the experiment is 
considered satisfactory if R < J&i,. Otherwise, 
selection can be carried out according to Hamil- 
ton’s criterioni which shows, at the preset L, A4 
and level of si~ificance, whether the difference 
between these two models is statistically 
sign&cant. The response function used in our 
program describes well practically any type of 
experiment for measuring stability constants. 

Thus, for spectrometry, having proposed 
Y, = 0 and all EN, = 0, f: will represent the 
optical density of the solution, Ei will reflect the 
molar indices of absorption, Y, the thickness of 
the cells and Y, the optical density of the 
solvent. 

In calorimetric experiments, F is the quantity 
of heat released or absorbed during the reaction, 
Y, the volume and Ei the molar enthalpy of the 
complex formation. 

For potentiometric experiments, having 
defined Y, = 0 and Ei = 0, and E& = ai (where 
oli is the activity coefficient of the ion for which 
a reversible sefective electrode is used) we obtain 
the ordinary Nernst equation. Here F may 
repreent either the potential in millivolts, in 
which case Y, = /A!3 and Y, is the zero potential, 
or in PC, = -lg[C,] for which Y, = fl and 
Y, = 0, where fi characterizes the deviation of 
the electrode function from the theoretical 
Nernst equation. It is, thus, possible to take into 
account the effect of an interfering cation j, if 
EHj is the selectivity coefficient, 

In addition, this function may describe the 
behaviour of the electrode for gH measurement 
where it is often necessary to take into account 
junction potentials? 

PI-L,, = PHO - lg(@ * IW 

+ A * [r-q + B * [mq. (23 

In this case, for equation (IS), F should be 
considered as the measured values of pH, 
Y0 = pHi,, where BH # 0 only for the proton for 
which EH = CI and E # 0 for the proton 
(E = A) and for the hydroxyl ion (E = B). 

Thus the chosen response function is univer- 
sal and may be used for any type of experiment. 
It is convenient when the simultaneous process- 
ing of data from different experiments is carried 
out. 

The significant characteristic of our approach 
is that the variables involved in equation (15) 
(such as Y,, Y, , & EH,) may act both as model 
parameters and independent variables. This is 
d&red by the user. For example, when we are 
~librating an electrode for which we do not 
know the junction potential, then EH, and $ 
should be considered as parameters and refined, 
In any subsequent work with this electrode, they 
may already be considered as independent 
variables. Similarly for s~ctrophotomet~, if 
from a single experiment one can determine the 
molar absorption of a ligand, then Ei for the 
ligand can be defined as a parameter while in 
other experiments this value would be used as 
an independent variable, 

Ii is rather simple for the user to change a 
parameter variable into an independent vari- 
able. Each parameter is defined with the key If 
which can adopt the values 0, 1,2. If IP = 0, 
then the corresponding value will not be refined, 
and thus it acts as an independent variable, its 
dispersion cont~buting to the weight factor 
according to the formula (20). If P = 1 or 2 
then the co~esp~nding value is defined to be a 
parameter and will be refined, Moreover, if 
IP = 1, it is refined only in one block. If IP = 2, 
then this parameter is common for some blocks. 
Thus, if we determine the electrode parameter 
from a series of titration curves, and in some 
series the alkali concentration is not known, 
then both alkali concentration and electrode 
characteristics are model parameters. However, 
the elec~ode parameters wifl be common for the 
series of titration curves, while the alkali 
concentration will be common only for the 
corresponding titration curve. 

The refinement of additional parameters 
helps to eliminate systematic errors, but here, as 
correctly noted in Ref, 5, they should be treated 
with caution, because this could lead to physi- 
cally insigni~cant models, and so the refmed 
parameters should be carefully scrutinised. In 
any case, if some additional parameters corre- 
late strongly with other ones, then their value 
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should be refined ex~~mentally and sub- 
sequently used as an independent variable. 

Tbe application of the method of singular 
d~om~sition allows the analysis of the matrix 
J, for conditionality. If matrix J, is poorly 
conditioned, then at least one of the singular 
numbers ai will be considerably smaller than the 
others. If it corresponds to one of the additional 
parameters, then this parameter should be 
transposed into an inde~~d~t variable, so as 
to improve the conditionality of the matrix J,, 
which leads to the non-uniqueness of the sol- 
ution, If this is impossible, then such singular 
numbers should be assumed to be zero, giving 
a tendency to stability of the system solution (3). 
In practise these operations are equivalent to 
keeping constant weak parameters which 
cannot be reliably determined from the given 
experiment. According to a recommendation,14 
we have assumed zero such bj for which 

@i/%X < Me, where L reflects the relative accu- 
racy of the initial data. For every singular 
number the set of zero components is listed. 
Any multiple p of these ~~~en~ may. be 
added to the obtained solution of the system (3) 
without changing the residual vector by more 
than @&. Thus the appli~tion of the singular 
d~om~si~on represents valuable i~fo~ation 
on the reliability and sensitivity of the 
determined parameters. 

In conclusion, the new program SIRKQ 
presents the following set of advantages with 
respect to the already existing programs: (i) it 
uses an algorithm of singular Jacobian 
d~omposition for non-linear parameters 
estimation. (ii) It is based upon a universal 
response function. (iii) ft uses statistically a 
rigorous weighting scheme, which takes into 
account all independent variables. (iv) It is a 
menu-oriented system, with a friendly user in- 
terlace. (vf It provides optional modules such 
as: the analysis of the rank of the matrix of 
absorbance of several solutions with different 
compositions, at several wavelength. The 
knowledge of this rank, which is equal to the 
minimum number of absorbing species in the 
solution studied, provides an objective criterion 
for the further interpretation of the spectropho- 
tometric data. The analysis of potentiometric 
data according to Bjerrum, in order to calculate 
the average number p of protons fixed to a 
ligand, and average number n’ of ligands fixed to 

a coordination center. This program has now 
been used for the calculation of the complexa- 
tion constants for macrocyclic compounds with 
metal cations from s~trophotomet~c data and 
from pH-metric titration?’ 

We have used SIRKO together with program 
MINIQUAD and SUPERQUAD** PC 
versions, in the treatment of our direct and 
competition potentiometric experiments (H+ or 
Ag+ as auxiliary cations), and together with 
program LETAGROP-SPEF07 working on an 
IBM 6081 computer, in the treatment of our 
multi-wavelength s~ctrophotometric studies of 
the metallic compfexation by the lower rim 
functional~ed calixarenes.23 In all cases, we 
concluded to an excellent agreement between 
the results given by SIRKO and the ‘elder* 
programs. SIRKO has also been successfully 
compared to a standard program for the 
titration calorimetric study of the complexation 
of alkali and alkaline-earth cations by a series of 
pan-butycalix[4]arene tetraamides?4 The polyva- 
lence of SIRKO, usable for any of the three 
types of experiments, and its interactivity, make 
SIRKG the best of all the programs we have 
used for our calixarene studies. 

A~kno~iedge~~~-be are grate&i to the French Govern- 
ment for a postdoctoral grant to one of us (V.V.). 
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